Experimental brain injury induces regionally distinct apoptosis during the acute and delayed post-traumatic period.
نویسندگان
چکیده
The temporal pattern of apoptosis in the adult rat brain after lateral fluid-percussion (FP) brain injury was characterized using terminal deoxynucleotidyl-transferase-mediated biotin-dUTP nick end labeling (TUNEL) histochemistry and agarose gel electrophoresis. Male Sprague Dawley rats were subjected to brain injury and killed for histological analysis at intervals from 12 hr to 2 months after injury (n = 3/time point). Sham (uninjured) controls were subjected to anesthesia with (n = 3) or without (n = 3) surgery. Apoptotic TUNEL-positive cells were defined using stringent morphological criteria including nuclear shrinkage and fragmentation and condensation of chromatin and cytoplasm. Double-labeled immunocytochemistry was performed to identify TUNEL-positive neurons (anti-neurofilament monoclonal antibody RM044), astrocytes (anti-glial fibrillary acidic protein polyclonal antibody), and oligodendrocytes (anti-cyclic nucleotide phosphohydrolase polyclonal antibody). Compared with that seen with sham controls, in the injured cortex, significant apoptosis occurred at 24 hr (65 +/- 19 cells; p < 0.05) with a second, more pronounced response at 1 week after injury (91 +/- 24 cells; p < 0.05). The number of apoptotic cells in the white matter was increased as early as 12 hr after injury and peaked by 1 week (33 +/- 6 cells; p < 0.05). An increase in apoptotic cells was observed in the hippocampus at 48 hr (13 +/- 8), whereas in the thalamus, the apoptotic response was delayed, peaking at 2 weeks after injury (151 +/- 71 cells; p < 0.05). By 2 months, the number of apoptotic cells in most regions had returned to uninjured levels. At 24 hr after injury, TUNEL-labeled neurons and oligodendrocytes were localized primarily to injured cortex. By 1 week after injury, populations of TUNEL-labeled astrocytes and oligodendrocytes were present in the injured cortex, while double-labeled neurons were present predominantly in injured cortex and thalamus, with a few scattered in the hippocampus. DNA agarose gels confirmed morphological identification of apoptosis. These data suggest that the apoptotic response to trauma is regionally distinct and may be involved in both acute and delayed patterns of cell death.
منابع مشابه
Neuropsychological and Neuropsychiatric Deficits Following Traumatic Brain Injury: Common Patterns and Neuropathological Mechanisms
Traumatic Brain Injury (TBI) in all degrees of injury severity mainly induces deviant cognitive, emotional and behavioral alterations that lead to their respective disorders. This brief overview strives to define the variables that determine the risk of occurrence of these disorders and to describe the common patterns of these disorders and their relevant neuropathogenetic mechanism(s). In addi...
متن کاملThe five preferences for post-traumatic SAH
Acute traumatic brain injury is a worldwide public health crisis. Post-traumatic subarachnoid hemorrhage (SAH) is a finding that is present at a frequency of 40% according to data from American TCDB (1,2). Among the mechanisms that have been implicated as causes of post-traumatic SAH is the cortical bleeding through the subarachnoid space. It is estimated that the incidence of post-traumatic SA...
متن کاملEffect of Estrogen and Progesterone on Cytokines Levels at Different Time Intervals after Traumatic Brain Injury
Introduction: Following a traumatic brain injury (TBI), the excessive release of proinflammatory cytokines is major cause of cerebral edema that can cause permanent neuronal loss. This study examined the changes in brain concentrations of proinflammatory cytokines IL-1, IL-6, TNF-α and TGF- after different doses of estrogen or progesterone treatment in brain-injured rats at 6 and 24 h post...
متن کاملIdentification of Imaging and Clinical Markers Predicting Chronic Sleep Disturbances After Traumatic Brain Injury in Adults
Background and Aim: We aimed to determine the prognostic imaging and clinical markers of chronic Post-Traumatic Sleep-Wake Disorders (PTSWDs) with a special focus on the early cognitive and executive dysfunctions following Traumatic Brain Injury (TBI). The prevalence rate of Post-Traumatic Psychiatric Disorders (PTPDs) in various sleep disorders was also investigated. Methods and Materials/Pat...
متن کاملP 76: Assay of Alterations of Cytokines to Remedy of Traumatic Brain Injury
Traumatic brain injury (TBI) is a global health concern that typically causes emotional disturbances and cognitive dysfunction. It elicits a complex secondary injury response, with neuroinflammation as a crucial central component. Secondary pathologies following TBI may be associated with chronic neurodegenerative disorders and an enhanced likelihood of developing dementia-like disease in later...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 18 15 شماره
صفحات -
تاریخ انتشار 1998